
Intro to Cloud

What is Cloud Computing?

What is Cloud Computing?
On-demand computing resources

Pay-as-you-go pricing

Resources available over the internet

No need to manage physical hardware

Owned by someone else

=> You don’t own anything, just rent resources for a certain timeframe

Key Benefits of Cloud Computing
Scalability: Grow resources as needed

Cost Efficiency: Pay only for what you use

Global Reach: Deploy worldwide in minutes

Reliability: Built-in redundancy and failover

Innovation: Access to cutting-edge technology

Types of Cloud Services
IaaS (Infrastructure as a Service)

Virtual machines

Storage

Networks

Popular providers: AWS, Azure, GCP, Hetzner, DigitalOcean

PaaS (Platform as a Service)
App Engine

Cloud Run

Managed databases

Popular providers: Vercel, Netlify

and the usual suspects again: AWS, Azure, GCP, Hetzner, DigitalOcean

SaaS (Software as a Service)
Gmail

OneDrive

ChatGPT

…

Providers

AWS by Amazon

Azure by Microsoft

Google Cloud Platform (GCP) by Google

All of them offer roughly the same services, for pretty much anything

The market gets dominated by three big companies:

Web applications have three important components

Frontend

Frontend

At the base of every frontend is a html
document, which defines the structure of the
webpage

Sometimes, CSS and JS are loaded in via the
base html document

continued

Backend

"Basic" file servers like nginx or apache

Usually stateless

Custom backends that contain logic, written in something like Node.js, Golang, etc

Often not directly exposed to the Internet, instead behind a reverse proxy like nginx

Two types:

Serverless vs "Serverfull" (long running
deployments)

Contrary to what the name might suggest, you still needs servers for serverless

Servers get spun up on demand for each request, instead of running all the time

Can be cheaper for apps which get used rarely

Pricing model typically exponential

huh, i thought you need servers to serve content?

Database
sometimes just a file system (storing the plain html documents)

sometimes a full scale sharded + replicated DB like MongoDB or MySQL

used for persistent storage of data

Deployment

Simple client side app

1. One click deploy on Vercel (or Github pages, Netlify)

2. Deploy to a large scale cloud platform, like GCP, AWS, Cloudflare via a special file hosting

service

3. Deploy to a VPS or bare metal box

Deployment options, ranked from easy to hard:

Demo time
lets do a one click deploy for a simple client side webapp

Alright, lets deploy an app as a docker
container

can show time

has a small api for random numbers

has a GUESTBOOOOOOOK

Its a basic early internet style web page:

Cloud Run Deployment to GCP
Lets create a project

set up permissions for service account:

gcloud projects add-iam-policy-binding $GOOGLE_CLOUD_PROJECT \

 --member="serviceAccount:github-actions@$GOOGLE_CLOUD_PROJECT.iam.gserviceaccount.com" \

 --role="roles/run.admin"

gcloud projects add-iam-policy-binding $GOOGLE_CLOUD_PROJECT \

 --member="serviceAccount:github-actions@$GOOGLE_CLOUD_PROJECT.iam.gserviceaccount.com" \

 --role="roles/storage.admin"

gcloud projects add-iam-policy-binding $GOOGLE_CLOUD_PROJECT \

 --member="serviceAccount:github-actions@$GOOGLE_CLOUD_PROJECT.iam.gserviceaccount.com" \

 --role="roles/cloudbuild.builds.editor"

gcloud projects add-iam-policy-binding $GOOGLE_CLOUD_PROJECT \

 --member="serviceAccount:github-actions@$GOOGLE_CLOUD_PROJECT.iam.gserviceaccount.com" \

 --role="roles/artifactregistry.writer"

enable some apis

gcloud services enable cloudbuild.googleapis.com run.googleapis.com artifactregistry.googleapis.com cloudresourcemanager

create a service account for the github actions

gcloud iam service-accounts create github-actions \

 --description="Service account for GitHub Actions CI/CD" \

 --display-name="GitHub Actions"

create sa for running the app in cloud run

gcloud iam service-accounts create cloud-run-sa \

 --description="Custom service account for running Cloud Run services" \

 --display-name="Cloud Run Service Account"

necessary permissions for cloud run set up

gcloud projects add-iam-policy-binding $GOOGLE_CLOUD_PROJECT \

 --member="serviceAccount:cloud-run-sa@$GOOGLE_CLOUD_PROJECT.iam.gserviceaccount.com" \

 --role="roles/run.invoker"

gcloud projects add-iam-policy-binding $GOOGLE_CLOUD_PROJECT \

 --member="serviceAccount:cloud-run-sa@$GOOGLE_CLOUD_PROJECT.iam.gserviceaccount.com" \

 --role="roles/logging.logWriter"

get name of default compute account

COMPUTE_ACCOUNT=$(gcloud projects describe $(gcloud config get-value project) \

 --format="value(projectNumber)" | awk '{print $1 "-compute@developer.gserviceaccount.com"}')

grant permissions to impersonate default compute account because its being used for the deployment process...

gcloud iam service-accounts add-iam-policy-binding \

 $COMPUTE_ACCOUNT \

 --member="serviceAccount:github-actions@$GOOGLE_CLOUD_PROJECT.iam.gserviceaccount.com" \

 --role="roles/iam.serviceAccountUser"

allow it to write to db

gcloud projects add-iam-policy-binding $GOOGLE_CLOUD_PROJECT \

 --member="serviceAccount:cloud-run-sa@$GOOGLE_CLOUD_PROJECT.iam.gserviceaccount.com" \

 --role="roles/datastore.user"

get the key to be able to authenticate as the service account

gcloud iam service-accounts keys create key.json \

 --iam-account github-actions@$GOOGLE_CLOUD_PROJECT.iam.gserviceaccount.com

allow github actions account to impersonate cloud run account

gcloud iam service-accounts add-iam-policy-binding \

 cloud-run-sa@$GOOGLE_CLOUD_PROJECT.iam.gserviceaccount.com \

 --member="serviceAccount:github-actions@$GOOGLE_CLOUD_PROJECT.iam.gserviceaccount.com" \

 --role="roles/iam.serviceAccountUser"

create registry

gcloud artifacts repositories create dockerintro \

 --repository-format=docker \

 --location=europe-west3 \

 --description="Docker repository for Cloud Run app"

create database

gcloud firestore databases create \

 --location=europe-west3 \

 --type=firestore-native

Finally done with permissions, lets set up the
continious deployment pipeline on github
1. Add the key as a secret to the github actions for the repo GCP_CREDENTIALS

2. Add the name of the GCP project as an env

3. Set up the pipeline

Ok, lets try changing some code and see the
pipeline in action

Resources to learn more
Google Cloudskillsboost for tutorials

ChatJippeetee, Claude, etc

Final credits

Go check them out, they’re awesome tools and make it so much more fun to develop webapps

This demo has been powered by Bun, htmx and nitro

