

What is Docker?

= software that allows you to run software in an

isolated environment

= enviroment is built using code and therefore .== n d k
reproducible OC en

= software packaged together with the enviroment is

called container

®m containers can be distributed

Isn't that just a VM?

Quick primer on how computers work

- : -

'wrﬁ{; iy

Some others thought this would be a good idea

Cu «

Briet overview of whats happening in a computer

Containers vs VMs

Container VM

& vmware
= only files which are needed for the application, = contains entire OS, with its own kernel
sometimes an OS, but without the kernel = big overhead from the entire OS + all its processes
= zero overhead for compute, slight overhead for = big size
storage = very secure, malware breaking out is basically
= small size impossible

® notas secure as a VM (don't run malware inside a
docker container)

= work by utilising linux namespaces and cgroups

Containerized Applications

Host Operating System

Infrastructure

Virtual Machine | | Virtual Machine | | Virtual Machine

Guest Guest Guest
Operating Operating Operating
System System System

Hypervisor

Infrastructure

Why would you want a container?

\’

THEN WE'II.'SIIII' YOUR QIGIIIIE

e LT ‘ f
Ry ™
pEELhits

AND THAT IS HOW DOCKER WES

Why would you want to use Docker?

= Dockeris THE industry standard for deploying software
Standard use cases for Docker:

= Easy + reliable dev setup for a project Instead of having to follow a long readme with loads of steps for
getting the project up and running, you simply run a single command, spinning up one (or more)
containers

= Easy automated testing setup without loads of steps

= Being able to build projects without polluting your entire OS with globally installed packages,
node_modules, etc

= Fully (self)documenting instructions for running a project

= Additional safety layer for deployed applications

= Quickly spinning up a distro without having to actually install it

= Being able to deploy a service to the cloud without vendor lock-in

Problems it solves

= Most programs are reliant on external configurations, software and files

=> software might work at one point in time but not at another

Example scenarios:

= You want to run some piece of software that relies on an old version of a runtime, such as python 2

= Most distros don’t come with python 2 installed anymore and it's often not even available in the repos
anymore

= even if you could install it, it might break other parts of your system
=> Containers

= You're building a complex Saa$S application with microservices, which are deployed on both a testing and
production enviroment

= How do you ensure that the software that you tested on the testing enviroment is also gonna run the

same in the production environment?

Sounds great, how do | get started?

$ docker run hello-world

$ docker run hello-world

Unable to find

image 'hello-world:latest' locally

latest: Pulling from library/hello-world
478afc919002: Pull complete

Digest: sha256:

d211f485f2dd1dee407a80973¢c8f129f00d54604d2c90732e8e320e5038a0348

Status: Downloaded newer image for hello-world:latest

Hello from Docker!
This message shows that your installation appears to be working correctly.

To generate this message, Docker took the following steps:

1. The Docker
2. The Docker
(arm64v8)
3. The Docker
executable
4. The Docker

client contacted the Docker daemon.
daemon pulled the "hello-world" image from the Docker Hub.

daemon created a new container from that image which runs the
that produces the output you are currently reading.
daemon streamed that output to the Docker client, which sent it

to your terminal.

To try something more ambitious, you can run an Ubuntu container with:
$ docker run -it ubuntu bash

Share images, automate workflows, and more with a free Docker ID:
https://hub.docker.com/

For more examples and ideas, visit:
https://docs.docker.com/get-started/

Image - just a snapshol

e >
(executable]

~

runtime

J
conpigura‘tion &le]
]

J

$ docker run hello-world

Unable to find image 'hello-world:latest' locally

latest: Pulling from library/hello-world

478afc919002: Pull complete

Digest: sha256:d211f485f2dd1dee407a80973¢c81129f00d54604d2c90732e8e320e5038a0348
Status: Downloaded newer image for hello-world:latest

Hello from Docker!
This message shows that your installation appears to be working correctly.

To generate this message, Docker took the following steps:
1. The Docker client contacted the Docker daemon.
2. The Docker daemon pulled the "hello-world" image from the Docker Hub.
(arm64v8)
3. The Docker daemon created a new container from that image which runs the
executable that produces the output you are currently reading.
4. The Docker daemon streamed that output to the Docker client, which sent it
to your terminal.

To try something more ambitious, you can run an Ubuntu container with:
$ docker run -it ubuntu bash

Share images, automate workflows, and more with a free Docker ID:
https://hub.docker.com/

For more examples and ideas, visit:
https://docs.docker.com/get-started/

%‘docker hub Q search Docker Hub #k] @ & i signin

Filters (2) 1 - 25 of 176 available images. Suggested v
Products Docker Official Image x Images x
Images

D Extensions
D Plugins

Trusted Content

O
D @ Sponsored 0SS

Categories

D APl Management

D Content Management System
D Data Science

Databases & Storage
Languages & Frameworks
Integration & Delivery
Internet of Things

Machine Learning & Al
Message Queues

Monitoring & Observability

O00000D0

memcached

Updated 16 hours ago

Free & open source, high-performance, distributed memory object caching system.

DATABASES & STORAGE

nginx
Updated 12 days ago

Official build of Nginx.

WEB SERVERS

busybox
Updated 13 days ago
Busybox base image.

OPERATING SYSTEMS

alpine

Updated 20 days ago

Y 1B+

L1B+

Y 1B+

Y 1B+

A minimal Docker image based on Alpine Linux with a complete package index and only 5 MB in size!

OPERATING SYSTEMS

w2.2K

210K+

w3.3K

210K+

Pulls: 6,642,574

Sey

Pulls: 9,636,530

Pulls: 9,498,751

Pulls: 8,721,067

Sep 30

Hello from Docker!
This message shows that your installation appears to be working correctly.

To generate this message, Docker took the following steps:
1. The Docker client contacted the Docker daemon.

2. The Docker daemon pulled the "hello-world" image from the Docker Hub.
(arm64v8)

3. The Docker daemon created a new container from that image which runs the
executable that produces the output you are currently reading.

4. The Docker daemon streamed that output to the Docker client, which sent it
to your terminal.

To try something more ambitious, you can run an Ubuntu container with:
$ docker run -it ubuntu bash

Share images, automate workflows, and more with a free Docker ID:
https://hub.docker.com/

For more examples and ideas, visit:
https://docs.docker.com/get-started/

I moage

[executable

S J

| runtime
[_—

L_db.—du

conﬁaur‘c\'tion & |e_
L

&

Basic Dockerfile
Code available at https://github.com/hugohabicht01/dockerintro

Dockerfile :

FROM node:18-alpine

WORKDIR /app

COPY . .

RUN yarn install --production
CMD ["node", "src/index.js"]
EXPOSE 3000

https://github.com/hugohabicht01/dockerintro

Dockerfile

FROM base:latest
RUN swmth

CMD L'Einaﬁ/', '--some_'Plaﬂ'J

Buildtime

Runtime

(

-

_

Imo«je_

j

— il —p (examplevO.1]

J_

(

el 7

~

Container

n * (r‘unning]

-

Basic Dockerfile
Code available at https://github.com/hugohabicht01/dockerintro

Dockerfile :

FROM node:18-alpine

WORKDIR /app

COPY .

RUN yarn install --production
CMD ["node", "src/index.js"]
EXPOSE 3000

src/index.js :

const Koa = require('koa');
const app = new Koa();

app.use(ctx = {
console.log([*] incoming request)
ctx.body = 'Hello from inside the container';

F)e

app.listen(3000);
console.log('[+] Server listening on port 3000')

https://github.com/hugohabicht01/dockerintro

Demo

Ok, how did that work?

Dockerfile :

FROM node:18-alpine

WORKDIR /app

COPY .

RUN yarn install --production
CMD ["node", "src/index.js"]
EXPOSE 3000

src/index.js :

const Koa = require('koa');
const app = new Koa();

app.use(ctx = {
console.log([*] incoming request)
ctx.body = 'Hello from inside the container';

F)e

app.listen(3000);
console.log('[+] Server listening on port 3000')

$ docker build -t intro:v0.1 .

,_|
+
—

N A I

Building 2.2s (9/9) FINISHED d
[internal] load build definition from Dockerfile

= transferring dockerfile: 156B

[internal] load metadata for docker.io/library/node:18-
[internal] load .dockerignore

= transferring context: 2B

[1/4] FROM docker.io/library/node:18-alpine@sha256:0237
[internal] load build context

= transferring context: 29.04kB

CACHED [2/4] WORKDIR /app

[3/4] copy .

[4/4] RUN yarn install --production

exporting to image

= exporting layers

= writing image sha256:5d652563bf0520e57d4dc24ad33db56
= naming to docker.io/library/intro:ve.1

$ docker run -p 3000:3000 --name introcontainer intro:v0.1

[+]

Server listening on port 3000

Layers

=

=

=

[1/4] FROM docker.io/library/node:18-alpine@sha256:02376a266c84achf4 0.0s
CACHED [2/4] WORKDIR /app 0.0s
[3/4] COPY . 0.0s
[4/4] RUN yarn install --production 1.1s
= exporting layers 0.0s

Layers

continued

Docker works in layers, for each line in the Dockerfile a new layer is created

Important docker commands

$ curl cheat.sh/docker

List all docker containers (running and stopped):
docker ps --all

Start a container from an image, with a custom name:
docker run --name container_name image

Start or stop an existing container:

docker start|stop container_name

Pull an image from a docker registry:

docker pull image

Display the list of already downloaded images:
docker images

Open a shell inside a running container:

docker exec -it container_name sh

Remove a stopped container:

docker rm container_name

Fetch and follow the logs of a container:

docker logs -f container_name

Quickly spin up a debian system

docker run -it debian:latest /bin/bash

Important Dockerfile instructions

FROM - base image to start from

RUN - execute any command

COPY - copies new files or directories to the filesystem

ADD - same as COPY, but supports remote (git, tar and plain) urls
ENTRYPOINT - configure command that runs when the container is started
CMD - configures the parameters passed to ENTRYPOINT

WORKDIR - sets working directory for following instructions

ENV - sets environment variables

ARG - defines variable that can be passed during build time

EXPOSE - inform docker that container listens on specified network port
LABEL - adds metadata to image

USER - defines default user and/or group

HEALTHCHECK - tells docker how to test if a container still works
SHELL - overrides shell form used in commands

M u |ti Stage dOCker $ docker build -t goexample:v0.1 .

[+] Building 3.1s (10/10) FINISHED d

[internal] load build definition from Dockerfile
FROM golang AS builder = transferring dockerfile: 236B
WORKDIR /build [internal] load metadata for docker.io/library/golang:1
coPYy . ./ [internal] load .dockerignore
RUN CGO_ENABLED=0 go build \ = transferring context: 2B
-ldflags '-extldflags "-static"' -o main main.go [builder 1/4] FROM docker.io/library/golang:latesta@sha2

[internal] load build context

= transferring context: 2.97kB

CACHED [builder 2/4] WORKDIR /build

[builder 3/4] COPY . ./

[builder 4/4] RUN CGO_ENABLED=0 go build -ldflags '-ext

CACHED [stage-1 1/1] COPY --from=builder /build/main /m

exporting to image

= exporting layers

= writing image sha256:21af68b0874d5ea6f51436a05c5c075

func main() { = naming to docker.io/library/goexample:v0.1
fmt.Println("Hello world from inside the container") $ docker run goexample:v0.1

} Hello, World!

FROM scratch
COPY --from=builder /build/main /main
ENTRYPOINT ["/main"]

package main

import "fmt

N 1 A [

Output size comparison

Raw binary:

$ 1s -la main
.I'wXr-xr-x 2.0M cedric 14 Oct 18:38 main

Docker image:

$ docker images goexample:v0.1
REPOSITORY TAG IMAGE ID CREATED SIZE
goexample vo.1 21af68b0874d 2 minutes ago

2.15MB

Tasks for you

1.

3.

Build a simple hello world application in the language of your choice, build a docker image for that and

run it
Try to deploy a simple website with just an index.html inside a docker container using caddy as the

webserver the Caddyfile andthe index.html can be found in the dockerintro repo

Create a new version (v0.2) for the last task, with some changes to the index.html

Hacker tasks :

. Create a multi-stage Dockerfile that compiles + runs any application of your choice in a language of your

choice

Minimize the size of the resulting docker image as much as possible
Create a simple microservice setup:

an API, that responds with the current time, in one container

another container that fetches that APl and then displays the result, either on a webpage or in the console

feel free to add more services and a DB

How can you try out Docker?

Many options available

Either

= online at https://labs.play-with-docker.com

= by installing Docker or any other OCI compatible runtime locally, such as podman

If you're on a GNU/Linux system, you can

= run docker or podman natively

if you're on MacOS or Windows, you'll need some software that spins up a Linux VM, such as

» QOrbstack (Mac)
= Rancher Desktop (Mac and Windows)

= Docker Desktop (Mac and Windows) (not really recommended...)

https://labs.play-with-docker.com/

Cool links to learn more about containers:

= Building a container runtime from scratch

https://www.youtube.com/watch?v=Utf-A4rODH8
https://www.youtube.com/watch?v=zfNqp85g5JM
https://www.youtube.com/watch?v=sK5i-N34im8
https://www.youtube.com/watch?v=-YnMr1lj4Z8
https://docs.docker.com/compose/
https://kubernetes.io/docs/tutorials/
https://www.manning.com/books/learn-kubernetes-in-a-month-of-lunches
https://www.manning.com/books/learn-docker-in-a-month-of-lunches

Presentation made with sli.dev

Documentation - GitHub - Showcases

Powered by & Slidev

https://sli.dev/
https://sli.dev/
https://github.com/slidevjs/slidev
https://sli.dev/resources/showcases

