
Intro to Docker

What is Docker?
software that allows you to run software in an

isolated environment
enviroment is built using code and therefore

reproducible

software packaged together with the enviroment is
called container

containers can be distributed

Isn’t that just a VM?

Quick primer on how computers work

Some smart people thought, mhhh why not take
sand

And make it into this

Some others thought this would be a good idea

Brief overview of whats happening in a computer

Containers vs VMs

Container

only files which are needed for the application,
sometimes an OS, but without the kernel

zero overhead for compute, slight overhead for

storage
small size

not as secure as a VM (don’t run malware inside a

docker container)
work by utilising linux namespaces and cgroups

VM

contains entire OS, with its own kernel
big overhead from the entire OS + all its processes

big size

very secure, malware breaking out is basically
impossible

Why would you want a container?

Why would you want to use Docker?
Docker is THE industry standard for deploying software

Standard use cases for Docker:

Easy + reliable dev setup for a project Instead of having to follow a long readme with loads of steps for
getting the project up and running, you simply run a single command, spinning up one (or more)

containers

Easy automated testing setup without loads of steps
Being able to build projects without polluting your entire OS with globally installed packages,

node_modules, etc

Fully (self)documenting instructions for running a project

Additional safety layer for deployed applications
Quickly spinning up a distro without having to actually install it

Being able to deploy a service to the cloud without vendor lock-in

Problems it solves
Most programs are reliant on external configurations, software and files

=> software might work at one point in time but not at another

Example scenarios:

You want to run some piece of software that relies on an old version of a runtime, such as python 2

Most distros don’t come with python 2 installed anymore and it’s often not even available in the repos
anymore

even if you could install it, it might break other parts of your system

=> Containers

You’re building a complex SaaS application with microservices, which are deployed on both a testing and
production enviroment

How do you ensure that the software that you tested on the testing enviroment is also gonna run the
same in the production environment?

Sounds great, how do I get started?

$ docker run hello�world

Unable to f�nd image 'hello�world:latest' locally

$ docker run hello�world

latest: Pulling from library/hello�world

478afc919002� Pull complete

Digest: sha256:d211f485f2dd1dee407a80973c8f129f00d54604d2c90732e8e320e5038a0348

Status: Downloaded newer image for hello�world:latest

Hello from Docker!

This message shows that your installation appears to be working correctly.

To generate this message, Docker took the following steps:

 1. The Docker client contacted the Docker daemon.

 2. The Docker daemon pulled the "hello�world" image from the Docker Hub.

 (arm64v8)

 3. The Docker daemon created a new container from that image which runs the

 executable that produces the output you are currently reading.

 4. The Docker daemon streamed that output to the Docker client, which sent it

 to your terminal.

To try something more ambitious, you can run an Ubuntu container with:

 $ docker run �it ubuntu bash

Share images, automate workflows, and more with a free Docker ID�

 https:��hub.docker.com/

For more examples and ideas, visit:

 https:��docs.docker.com/get�started/

latest: Pulling from library/hello�world

478afc919002� Pull complete

Digest: sha256:d211f485f2dd1dee407a80973c8f129f00d54604d2c90732e8e320e5038a0348

Status: Downloaded newer image for hello�world:latest

$ docker run hello�world

Unable to f�nd image 'hello�world:latest' locally

Hello from Docker!

This message shows that your installation appears to be working correctly.

To generate this message, Docker took the following steps:

 1. The Docker client contacted the Docker daemon.

 2. The Docker daemon pulled the "hello�world" image from the Docker Hub.

 (arm64v8)

 3. The Docker daemon created a new container from that image which runs the

 executable that produces the output you are currently reading.

 4. The Docker daemon streamed that output to the Docker client, which sent it

 to your terminal.

To try something more ambitious, you can run an Ubuntu container with:

 $ docker run �it ubuntu bash

Share images, automate workflows, and more with a free Docker ID�

 https:��hub.docker.com/

For more examples and ideas, visit:

 https:��docs.docker.com/get�started/

Hello from Docker!

This message shows that your installation appears to be working correctly.

To generate this message, Docker took the following steps:

 1. The Docker client contacted the Docker daemon.

 2. The Docker daemon pulled the "hello�world" image from the Docker Hub.

 (arm64v8)

 3. The Docker daemon created a new container from that image which runs the

 executable that produces the output you are currently reading.

 4. The Docker daemon streamed that output to the Docker client, which sent it

 to your terminal.

To try something more ambitious, you can run an Ubuntu container with:

 $ docker run �it ubuntu bash

Share images, automate workflows, and more with a free Docker ID�

 https:��hub.docker.com/

For more examples and ideas, visit:

 https:��docs.docker.com/get�started/

$ docker run hello�world

Unable to f�nd image 'hello�world:latest' locally

latest: Pulling from library/hello�world

478afc919002� Pull complete

Digest: sha256:d211f485f2dd1dee407a80973c8f129f00d54604d2c90732e8e320e5038a0348

Status: Downloaded newer image for hello�world:latest

Basic Dockerfile

Dockerf�le :

Code available at https://github.com/hugohabicht01/dockerintro

FROM node:18-alpine
WORKDIR /app
COPY . .
RUN yarn install ��production
CMD ["node", "src/index.js"]
EXPOSE 3000

https://github.com/hugohabicht01/dockerintro

Basic Dockerfile

Dockerf�le :

src/index.js :

Code available at https://github.com/hugohabicht01/dockerintro

FROM node:18-alpine
WORKDIR /app
COPY . .
RUN yarn install ��production
CMD ["node", "src/index.js"]
EXPOSE 3000

const Koa = require('koa');

const app = new Koa();

app.use(ctx �� {

 console.log(`[*] incoming request`)

 ctx.body = 'Hello from inside the container';

});

app.listen(3000);

console.log('[+] Server listening on port 3000')

https://github.com/hugohabicht01/dockerintro

Demo

Ok, how did that work?

src/index.js :

Dockerf�le :

FROM node:18-alpine
WORKDIR /app
COPY . .
RUN yarn install ��production
CMD ["node", "src/index.js"]
EXPOSE 3000

const Koa = require('koa');

const app = new Koa();

app.use(ctx �� {

 console.log(`[*] incoming request`)

 ctx.body = 'Hello from inside the container';

});

app.listen(3000);

console.log('[+] Server listening on port 3000')

$ docker build �t intro:v0.1 .

[+] Building 2.2s (9/9) FINISHED do
 �� [internal] load build def�nition from Dockerf�le
 �� �� transferring dockerf�le: 156B
 �� [internal] load metadata for docker.io/library/node:18-a
 �� [internal] load .dockerignore
 �� �� transferring context: 2B
 �� [1/4] FROM docker.io/library/node:18-alpine@sha256�02376
 �� [internal] load build context
 �� �� transferring context: 29.04kB
 �� CACHED [2/4] WORKDIR /app
 �� [3/4] COPY . .
 �� [4/4] RUN yarn install ��production
 �� exporting to image
 �� �� exporting layers
 �� �� writing image sha256�5d652563bf0520e57d4dc24ad33db56f
 �� �� naming to docker.io/library/intro:v0.1
$ docker run �p 3000�3000 ��name introcontainer intro:v0.1

[+] Server listening on port 3000

Layers

 �� [1/4] FROM docker.io/library/node:18-alpine@sha256�02376a266c84acbf4 0.0s

 �� CACHED [2/4] WORKDIR /app 0.0s
 �� [3/4] COPY . . 0.0s
 �� [4/4] RUN yarn install ��production 1.1s

 �� �� exporting layers 0.0s

$ docker build �t intro:v0.1 .

[+] Building 2.2s (9/9) FINISHED docker:desktop�linux
 �� [internal] load build def�nition from Dockerf�le 0.0s
 �� �� transferring dockerf�le: 156B 0.0s
 �� [internal] load metadata for docker.io/library/node:18-alpine 0.9s
 �� [internal] load .dockerignore 0.0s
 �� �� transferring context: 2B 0.0s

 �� [internal] load build context 0.0s
 �� �� transferring context: 29.04kB 0.0s

 �� exporting to image 0.0s

 �� �� writing image sha256�5d652563bf0520e57d4dc24ad33db56fa6f1a550a6ca 0.0s
 �� �� naming to docker.io/library/intro:v0.1 0.0s

Layers

Docker works in layers, for each line in the Dockerfile a new layer is created

continued

Important docker commands
$ curl cheat.sh/docker

List all docker containers (running and stopped)�

docker ps ��all
Start a container from an image, with a custom name:

docker run ��name container_name image
Start or stop an existing container:

docker start|stop container_name
Pull an image from a docker registry:

docker pull image
Display the list of already downloaded images:

docker images
Open a shell inside a running container:

docker exec �it container_name sh
Remove a stopped container:

docker rm container_name
Fetch and follow the logs of a container:

docker logs �f container_name
Quickly spin up a debian system

docker run �it debian:latest /bin/bash

Important Dockerfile instructions
FROM - base image to start from
RUN - execute any command
COPY - copies new f�les or directories to the f�lesystem
ADD - same as COPY, but supports remote (git, tar and plain) urls
ENTRYPOINT - conf�gure command that runs when the container is started
CMD - conf�gures the parameters passed to ENTRYPOINT
WORKDIR - sets working directory for following instructions
ENV - sets environment variables
ARG - def�nes variable that can be passed during build time
EXPOSE - inform docker that container listens on specif�ed network port
LABEL - adds metadata to image
USER - def�nes default user and/or group
HEALTHCHECK - tells docker how to test if a container still works
SHELL - overrides shell form used in commands

Multi stage docker
FROM golang AS builder
WORKDIR /build
COPY . ./
RUN CGO_ENABLED=0 go build \
�ldflags '�extldflags "�static"' �o main main.go

FROM scratch
COPY ��from=builder /build/main /main
ENTRYPOINT ["/main"]

package main

import "fmt"

func main() {

 fmt.Println("Hello world from inside the container")

}

$ docker build �t goexample:v0.1 .

[+] Building 3.1s (10/10) FINISHED do
 �� [internal] load build def�nition from Dockerf�le
 �� �� transferring dockerf�le: 236B
 �� [internal] load metadata for docker.io/library/golang:la
 �� [internal] load .dockerignore
 �� �� transferring context: 2B
 �� [builder 1/4] FROM docker.io/library/golang:latest@sha25
 �� [internal] load build context
 �� �� transferring context: 2.97kB
 �� CACHED [builder 2/4] WORKDIR /build
 �� [builder 3/4] COPY . ./
 �� [builder 4/4] RUN CGO_ENABLED=0 go build �ldflags '�extl
 �� CACHED [stage-1 1/1] COPY ��from=builder /build/main /ma

 �� exporting to image

 �� �� exporting layers

 �� �� writing image sha256�21af68b0874d5ea6f51436a05c5c075a

 �� �� naming to docker.io/library/goexample:v0.1

$ docker run goexample:v0.1

Hello, World!

Output size comparison

Docker image:

Raw binary:

$ ls �la main

.rwxr�xr�x 2.0M cedric 14 Oct 18�38 main

$ docker images goexample:v0.1

REPOSITORY TAG IMAGE ID CREATED SIZE

goexample v0.1 21af68b0874d 2 minutes ago 2.15MB

Tasks for you
1. Build a simple hello world application in the language of your choice, build a docker image for that and

run it
2. Try to deploy a simple website with just an index.html inside a docker container using caddy as the

webserver the Caddyf�le and the index.html can be found in the dockerintro repo

3. Create a new version (v0.2) for the last task, with some changes to the index.html

Hacker tasks :

1. Create a multi-stage Dockerfile that compiles + runs any application of your choice in a language of your

choice

2. Minimize the size of the resulting docker image as much as possible

3. Create a simple microservice setup:
an API, that responds with the current time, in one container

another container that fetches that API and then displays the result, either on a webpage or in the console

feel free to add more services and a DB

How can you try out Docker?

Either

online at https://labs.play-with-docker.com

by installing Docker or any other OCI compatible runtime locally, such as podman

If you’re on a GNU/Linux system, you can

run docker or podman natively

if you’re on MacOS or Windows, you’ll need some software that spins up a Linux VM, such as

Orbstack (Mac)

Rancher Desktop (Mac and Windows)
Docker Desktop (Mac and Windows) (not really recommended…)

Many options available

https://labs.play-with-docker.com/

Cool links to learn more about containers:
Building a container runtime from scratch

Interesting usecases for docker
Deep dive into the building blocks of docker

Intro to Linux namespaces

Docker Compose
Kubernetes Tutorials

Great book about k8s

Great book about docker

https://www.youtube.com/watch?v=Utf-A4rODH8
https://www.youtube.com/watch?v=zfNqp85g5JM
https://www.youtube.com/watch?v=sK5i-N34im8
https://www.youtube.com/watch?v=-YnMr1lj4Z8
https://docs.docker.com/compose/
https://kubernetes.io/docs/tutorials/
https://www.manning.com/books/learn-kubernetes-in-a-month-of-lunches
https://www.manning.com/books/learn-docker-in-a-month-of-lunches

Presentation made with sli.dev

Powered by

Documentation · GitHub · Showcases

https://sli.dev/
https://sli.dev/
https://github.com/slidevjs/slidev
https://sli.dev/resources/showcases

