
Compsoc x Mathsoc:   Intro to Mathematical Programming

Make sure to check out both societies if you enjoy 



What can I with this information?

● Familiarise yourself with 
coding and mathematics

● Consider adding a project 
in animation or simulation 
to your portfolio

● Speed up your algorithms 
by employing mathematical 
simplification

● Absolutely nothing

● Data Scientist
○ Citi Bank
○ Expedia Group

● Quant Trader
○ Jane Street
○ QRT

● Software Engineer
○ Motorola
○ Epic Games

● Robotics Engineer
○ Caterpillar
○ Phd with Engineering 

Department



Lattice Paths Many FactorsTriangle sums

Coding                                                                                                         Maths







https://www.manim.community



https://www.manim.community

https://try.manim.community



Once you’re trying Manim

File



Once you’re trying Manim

File New



Once you’re trying Manim

File New Notebook



Once you’re trying Manim

File New Notebook

Select



Your first program

from manim import *

config.media_width = "75%"
config.verbosity = "WARNING"



Your first program

from manim import *

config.media_width = "75%"
config.verbosity = "WARNING"

alt + ENTER



Your first program

from manim import *

config.media_width = "75%"
config.verbosity = "WARNING"

%%manim -qm CircleToSquare

class CircleToSquare(Scene):
    def construct(self):
        blue_circle = Circle(color=BLUE, fill_opacity=0.5)
        green_square = Square(color=GREEN, fill_opacity=0.8)
        self.play(Create(blue_circle))
        self.wait()
        
        self.play(Transform(blue_circle, green_square))
        self.wait()



Your first program

from manim import *

config.media_width = "75%"
config.verbosity = "WARNING"

%%manim -qm CircleToSquare

class CircleToSquare(Scene):
    def construct(self):
        blue_circle = Circle(color=BLUE, fill_opacity=0.5)
        green_square = Square(color=GREEN, fill_opacity=0.8)
        self.play(Create(blue_circle))
        self.wait()
        
        self.play(Transform(blue_circle, green_square))
        self.wait()

ctrl + ENTER



https://docs.google.com/file/d/1agdX4M9pReChzOb09ofOdLjtURJXuk0h/preview


Worked Problem: Lattice Paths



Lattice Paths

- a “curve” made up of line segments

- the length of the path is the number of such line segments

- i and j are integers



Applications

- visualising transition states in Markov chains and 

computing probabilities

- some pathfinding algorithms such as A*

- modelling random walks



LIVE DEMONSTRATION



Motivating Example:

A school play requires a ten-dollar donation per person

The donation goes into the student activity fund.

Assume that each person who comes to the play pays with a ten-dollar bill 

or a twenty-dollar bill.

The teacher who is collecting the money forgot to get change before the 

event.

If there are always at least as many people who have paid with a ten as a 

twenty as they arrive the teacher won’t have to give anyone an IOU for 

change.

Suppose 2n people come to the play, and exactly half of them pay with 

ten-dollar bills.



Describe a bijection between the set of sequences of tens and twenties 

people give the teacher and the set of lattice paths from (0, 0) to (n, n).



Describe a bijection between the set of sequences of tens and twenties that 

people give the teacher and the set of diagonal lattice paths between (0, 0) 

and (2n, 0).



In each of the previous parts, what is the geometric interpretation of a 

sequence that does not require the teacher to give any IOUs?



- HackNotts & DurHack
- Intro to BigTech & 

Autonomous Driving 
(ft. Nvidia)

- Logic Lounge
- Integration Bee



Triangle sums

Project Euler Problem 67 : https://projecteuler.net/problem=67



Many factors

Clues:

1. Write out the factors of 120, what do you notice?

2.How can you count the factors of a number, knowing its prime factors?

3. The numbers here are clearly too big, how can you only deal with small 
numbers?

Project Euler Problem 500 : https://projecteuler.net/problem=500



#reading file into cool formats

f = open("0067_triangle.txt", "r")

triangl = f.read().split("\n")

triangle = [x.split(" ") for x in triangl]

#changing all entries to integers

for i in range(len(triangle)-1):

    for j in range(len(triangle[i])):

        triangle[i][j] = int(triangle[i][j])

#print(triangl[3])

#print(triangle[3])

#print(triangle[3][1])

#print(type(triangle[0][0]))

#starting at the penultimate row of the triangle, and iterating 

backwards until index 0

for row in range(len(triangle)-3, -1, -1):

    for index in range(len(triangle[row])):

      #adding the maximum of the entries below, to see the max 

sum passing through this point in the triangle

        triangle[row][index] = triangle[row][index] + 

max(triangle[row+1][index], triangle[row+1][index+1])

       

#the maximum sum overall

print(triangle[0][0])

Triangle code



import math

primes = []

primes2 =[]

#checking ig a number is prime (not very interesting)

def primecheck(num):

    for x in range(2, int(math.sqrt(num)) + 1):

        if num % x == 0:

            return False

    return True

#generating a list of prime numbers

a = 0

for k in range(1, 7376508):

    if primecheck(k) == True:

        primes.append(k)

        a += 1

        print(k, "making primes")

# actually awful list usage but this is old code im so sorry

primes.pop(0)

#expanding list to include numbers of the form p^(2^n) (will also multiply number of  

factors by 2)

for t in primes:

    if t**2 < 7376508:

        primes.append(t** 2)

        print(t**2, "making powers" )

#preparing to select the 500500 smallest elements of the list

primes.sort()

#multiplying them all mod 500500

product = 1

for s in range(0, 500500):

    product *= primes[s]

    product = product % 500500507

    print(product, s)   #i like watching numbers tick up

Factors code (takes a bit longer to run)


